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SIGNIFICANCE AND EXPLANATION

Let A be a square matrix. The permanent p (A) of A is basically the

determinant of A where all the summands appear with + signs. T~~ notion

p(A) arises naturally in many combinatorial settings where a count of the

• number of systems of distinct representatives of some configuration is required.

In this paper we establish lower estimates of the right order for the permanents of

doubly stochastic matrices. Recall that A is called a doubly stochastic matrix

if all the entries of A are nonnegative and each row and column sum of A is

equal to 1. Doubly stochastic matrices appear frequently in probability and

combinatorics. The result established in this paper will have various applica-

tions in cornbinatorics and probability, in particular to Latin squares and

block designs. 
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A WWER BOUND FOR THE PERMANENT OF A DOUBLY

STOCHASTIC MATRIX

*Shmuel Friedland

1. Introduction.

Let A be an n x n matrix (Cjj
)~~. The permanent of A is defined by

(1.1) p (A) — 11 a~0(~ )
O€ S~ i—i

where S~, is the sy~~ietric group of order n. Let 0 be the set of all doubly stochastic

matrices, that is, the set of all n x n matrices A satisfying

(1.2) ajj 0. 

~ 

a~~ — 

~ 

a~ — 1, 1 ~ j,j ~

It is conjectured that any doubly stochastic matrix satisfies the inequality

( 1.3) p (A) , nI /n ~

with the equality holding only for the matrix J all of whose entries are 1/n . The proble m

of finding the minimai of p (A) on the set S goes back to van der Wae rden (61 . In fa ct

the inequality ( 1 .3)  is coemonly referred as the van der Waerden conjecture . This conjecture

is known to have applications to certain combinatorial problems . In this paper we establish
4

the inequ ality

(1.4) p(A) ~ e~~~, A c S

~~~~~~~~~ ~~ca1l that by Stirling ’s formula n t/n fl 

~J5ii~ e~~~. The previous lower bound known

before was 1/ni . See (3) for the proof of this result and for the survey of the main re-

suits achieved in connection with the van der Waerde n conjecture . Our starting point is the

in.quality due to T. Bang (U

*Institu te of Math ematics , The Hebrew Uni versity at Jerusal em.
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(1.5) p ( A )  ~~~ ~ ~m~

1

~” 
m = 2~ ,

which holds for any non-neqative A. Here by B ~ C we denote the tensor product of

matrices B and C. Most of the paper is devoted to the proof of the equality

(1.6) lim p (A ® J ) h/m = e~~

for any n x n doubly stochastic matrix A. Clearly in view of (1.5), the equality (1.6)

implies the estimate (1 4)
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2. Preliminary results.

Let a S .  Define

(2.1) P0 —

By n ,m we denote the set of all matrice, a with integer coefficients such that s/m is

an n x n doubly stochastic matrix;

(2 .2 )  n, m — — (ajj);’~ ~~~ 
c a~~ £

From the classical Birkhoff theorem (e.g. (4)) it follows that

(2.3) a — P , a E • m
k—i k

Following T. Bang (1) we bring a formula for the permanent of A ~

Theorem 2 • 1. Let A be an n x n matrix. Then

(2.4) p(A 
~ 
3m~ 

— 
~~~~~~~ ac• i,~ — l 

~~~~~~~~~~
n,m

Proof. consider a term in p(A~~ ~m~
• It is of the form

n a
(2.5) m~~~ ~

i , j—l

clearly , each ajj is a non-negative integer. Consider the rows i, m+i,...,(n—l) #i. The..

rows contribute to the product (2 .5)  the term _-n IT ~~~~~ Therefore, ~ a~ — a. In
j— l j—l

the same way one shows that 
~ 

a 1~ — a. Thus, (a~~)~ n,a Vice versa, suppose that

~ n,m Then (2.3) holds. Let us view A ~ J~ as a block matrix

( 2.6) A — (A 1~ )~~. ~~~ — m ’A , i, j — 1,. a

— 3—
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In the block A r take a product m 0 
11 a. (.). By multiplying all these torms r,-

qether one obtains the expression

St n
— nm(2.7) m ~ fl a .

ia (i)r=l i=1. r

In view of (2.3) the expression (2.7) is equal to (2.5). We now compute the coefficient of

the term (2.5). That is we are looking fo r the number of different ways to nick up ale—

mnents a11/m ann elements a0~/m from the matrix A ® 
~m such that any two elements are

not on the same row or column . We call such a choice an admissable choice. Let us label
(cm . .)

a. . elements a. ./m by aW /m,. . .,a.. 1) /n. Assume that for ci . . > 1 the element a~~~ /n1) 13 13 1J 1) — 1)

(1 < Ic < a . . )  sits in the row i + i i (k , i , j ) n  and the column j + v ( k , i ,j ) n  in the mat r ix

A ® 3 .  We assume that no two elements are placed in the same position . Let us call such a

choice of positions a configuration.  Two configurations considered to be equal if for each

ci . . > 1 and 1 k a . . the nositions of the elements a~~~ /m coincide . Given a con-— 1J 1J

figuration one obtains a distinct confirguration by interchanging rows (columns) i and j,

where i j (mod n). It is easy to see that one can obtain any admissable configurat ion from

a given configuration by interchanging appropriate rows and columns . Obviously , the rows

(col umns) i, i+n i + (m — 1)n  (1 < i < n) can be interchanged in m! ways. Thus accord— 
*

ing to what we proved one has (m!)2~ distinct configurations . Let us go back to the problem

of determining the number of d i f f e r en t  ways to pick up the cx . . elements a
~ 3

/n for

= 1, . .. , n (an admissable choice) . Clearly any configuration qives rise to an admissable

n
choice. We claim that to any admnissable choice correspond TI a ..! distinct configuration.

i.j=l ~

Indeed, for this choice, we have ci ..(~ l) places occupied by a. fm. In these a . places

(1) 
3 1) ii

we put a . .  /1fl~~.. ..  /m. This can be done in c i . . !  ways . Thus , to the given adnissable

n
choice corresp ond II distinct confi gurations . Obviously, to two distinct admissable

i ,j = l

choices corresp ond distinct configurations. This demonstrates that the number of diff~ rent

~~~~~ ways to pick up elements a 1./m . i ,j  1 , . .  . , m , from the matr ix  A 
~ 

3m ’ such that

any two elements are not on the same row or column, is equal to (m!) ~fl ( ~~~t) . The
i ,j = 1

—4—
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proof of the theorem is completed .

‘the permanent of a non-negative matrix can be estimated in terms of the permanent of

• 
A~~~~J (11 .

Theorem 2.2. Let s be a positive integer and in — 2’. Then for any non-negative square

matrix the following inequality holds

(2.8) p (A) ‘ (p ( A a J ~ ) 1 Vm

Proof. We prove first the inequality (2.8) for in — 2. From (2.4) it follows

( 2 . 9 )  p (A a — ~ IT a~~~~/a~ I
aE
~n 2  i,j~l

On the other hand

(2.10) p (A)2 — IT a
~O (I) j i

Let a s •n 2  According to (2.3) a = p + p~ . Thus

n n n a
(2.11) h a  h a  — IT aicm (i) 

~~~~ 
j i i (j )  

~~~~ 
ii

it a~~4 2Therefore, the coefficient of the term TI a~~ ~ in p (A) is a positive integer. The
id—i

coefficient of this term in p(A a never exceeds 1. This establishes the inequality

(2.8) for a — 2. Now the general case easily follows by induction. Indeed , suppose that

(2.8) holds. Then

(2.12) p ((A øJ~) x J 2)~~~~~ < p (A W J m)~~
m < p(A)

It is 1•ft to not, that the tensor product is associative and

( 2 . 1 3 )  a 
~ 2 

—

End of proof.

Let A be an n x n do~~ly stochastic matrix. Suppose that the van icr Waerden

—5—
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conjecture holds. Then

1/rn
(2.14) p (A EJm

)T’m > [(nm)!/(nm)~~
’I

In what follows we estimate p (A a frost above.

Lemna 2.1. Let A = (a. )
fl be a non-negative matrix. Then

— 1) 1 — —  —

(2.15) p (A a J )  ~ 
(m~)~ ~ ~
m 1 1  j=l

Proof. Consider the expression

n n B .
(2. 16) ( ~ a i . ) m 

= in! Ti a . . 3/B . !
j=l ~ 81

+.. .+Bn=m j=l ~

Choosing B.  = a... j  = 1,... ,n, we get that the coefficient of the term fl a.
1
~ in the

3 1) j = 1
n

expansion (2.16) is m!/ II a .. !. Expanding the expression
j=l ‘~

(2.17) 
1.~~~

n 
(~~ a..)~

”
Inn . . 13in 1=1 3=1

n a..
we see that the term 11 a . . ~~~~, a • , appears in (2.17) with the coefficient

1) n,m

(inU2n 

~ 

( !) 1 As the expansion of the term (2.17) contains only non—negative terms

from the identity (2.4) we deduce the inequality (2.15).

Thus, if A is a stochastic matrix the inequality (2.15) implies

1 1/rn
(2.18) p (A 

~ 

/n 
< ((m!)~ /rn’~ )

Note that if A P then the equality sign holds in (2.18). Recall the well known Stirling

f ormula (e.g. (2,  p .52) )

0 /l2n
(2.19) n I _ / ~i~~ nbe me

n 0 < 0 < 1

Thus, if the van der Waerden conjecture holds by combining (2.14) and (2.18) with the

Stirling formula we obtain

—6— 

- — 

—~~~- . — — — — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-
~~~~~~

— —-



I
( 2.20) u r n  p(A a 3 1 1/m — e m

-_ 

• 
for any doubly stochastic matrix A. We shall prove the equality above in the next section,

without assuming the validity of the van der Waerden conjecture. Of course, once (2.20) is
V.

• established in view of Theorem 2.2 one deduces the inequality

(2.21) p(A) > ~~~ A € 17

Vice versa, (2.21 ) implies

(2 .22)  p(A a J ) l/m e~~

Combining (2.22) with (2.18) we obtain again the equality (2.20). This manifests the equi—

valence of the relations (2.20) and (2.21).

L 
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3. The main result.

Lenma 3.1. Let n and r be fixed positive integers. Then there exists two sequences of

positive numbers {c
~
}. {orn}; 

tending to zero such that for ~~~ non-negative r integers

satisfying the equality

(3.1) k + ...+k = m1 r

the following inequality holds

(nk )L..(nk It
(3.2) nns~(l + ~ ~~~~~~ 

> 
1 r nfhl(l — )

flfll (~ 1)
m — 

(k ! ) r
~. . .  (k !) ~~~ 

— m m

Proof. According to Stirling’s formula (2 .19)

a j~~
1”2/e1 -. jI > / ~i j+l/2,j

for any j > 1. Without loss of generality we may assume that

1 < k ., i = l  s, k. 0. i s +l r
~~~ 1 1

Thus

nk +1/2 nk +1/2
(nk)!...(nic)! ( n k ) ! . . . ( n k ) !  (nk ) 1 . . . ( n k )

(k
l
!)n...(k

r
!)n (k1

!)n...(k5
!)n ((211)

(n_1)/2
e
n)(k )

l (k) s 
=

(3.3)

nmn
~~~

’2 
____________________

ema t (2fl)5k1...k5I~~~~~
’2 — 

(en (2TInfs)
th_1U2

1
5

The last part of the above inequality follows from the obvious fact

k1
.. .k < ((k1

+..+k )/s!
5 (rn/s)S

We also have

4

-8- 
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nk1+l/2 nk
5
+l/2

(nk 1)l...(nk H e5(nk1
) . . . ( nk ) 

—

(k
l
!)n...(kr!)

n — 
(n-l)s/2 l s 

—

( 3 . 4)

~~ ~~~~~~~~~~~ S Iflfl+S/2

((211)5k1...k l
(0 1U2 —

Here we used the inequality

k...k > (n—s+1)1 s —

since Ic1,... ,k are positive integers which sum up to m. Clearly the relations

1+s/2nm s/run l+s/2nmn
St . a n(3.5) lin = li.m = n

m~~ (e~ (2TIm/s) 
/‘2 ) s/’nrn 

~~~

prove the lemma.

Lenisa 3.2. Let p
1
,.. 

~~~r 
be non-negative integers such that

(3.6) p1
+. . .+p — nm

Then there exist non-negative integers q
1,. . .q with the following properties

(3.7) q1
+. . .+q~ — in

(3.8) 1P1 
— nq

1
j < n, j — 1 r

and

(3 9) (mm) I / \
r-.1 (nut) I

— (
(nI) 

(nq 1) I . . . ( n q ) !

Proo f. By rearranging the indices we may assure that

Pj  $ 0 (mod n), j —

(3.10)
p
1 
5 0 (mod n), j —

In case that Ic — 0 (3.9) is trivial. Assume that I c >  2. Without loss of generality we

—9—
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assume that

(3. 11) 
~1 ~

Let

(3.12) p1 
= nq

1 
+ t1

, p2 = n(q1
+l) — t 2 , 1 ~ t1, t2 

< n

Suppose that

(3.13) t1 
<

Then

p11p2 ! (nq 1
+l)...(nq1+t1)

(3.14) (nq1
)~~~p2+t 1~~ 

= 
tn(q 1+1)—t2

+l]...tn(q 1+l)—(t2—t1
)l

Noting that the function (nx+a)/(nx+b) is increasing on (0,”) if 0 < a < b we obtain

(3.15) (nq1
)!(:2

+t1)! ~ (n-t2
+l) . ..(n-(t2-t1)I ~~

-

Recalling the well known inequality
/

(n \ <  ~

i

one deduces

(3.16) l/(p1
!p2
!) < 

(
~~

‘

),
/~

(n~l)I (p2+t1)!I

Let

(3. 17) j  = 1 k—2 ,  p
~~1 

p
2
+t1, p~ nq1, p = p1, j  = k+l r

According (3.l( . we proved

(3.18) 
I~1

I
~~~4ir I 

(~;~) 
P~~~~~.P;I

1k 
b0

a - 5- , • - -- ____________--

_ _ _ _  - L~~~~~~~~~~----~~~~~------ —.——-—-——— —-- —— -~~~~ 5-~~~~~~~~~~
__

~~~~



1 1 n  case that t2 < t 1, we replace p~_ 1 and p~ given by (3 17) by D
1—t2 and n(q 1+l) 

I
respectively and (3.18) is still valid. Note that p~ + . . .+p~ — tim and at most k—i numbers

out of pt , .  . .,p are not divisible by n. Continuing the procedure above we obtain the in-

equality (3.9) .

£ Lemma 3.3. Let

~~~~ ( 3 . 1 9 )  0 < a  < a  < ... <a < 1r —  r— 1 — — 1 —

Then

(3.20) (
~ 

a
j)

~~ < a; 
-1 

(n )

r_l 
r

(em) ! ~~~ nk

Ic + .. +k ~~ 
Ic1 

u k ) ! ~1 “ 5 r
1 r

Proof. Recall that

(3.21) ( 
~ a - ~~~~ a~1.. .a~~

\j—i  / D
1
+ 

~~~~~~~~ 
P1~~~”1~r ’ 1

Consider a term

( 3 . 2 2)  
(tim) ! ~~~~~~~~1 r

According to Lensia 3.2 there exist positive integers q1,.. . ,q~ such that ( 3 . 7 )  — ( 3 .9)

hold. As S
j ~ 1 we also have

~l ~‘r — ( n — i )  t~q1 — ( n — i )  ~~r -(n— 1)r ‘~~i ‘~~r(3.23) a1 ...ar ~ (a~ a1 )...(a ar ~~
5r (a1 “~

5r

So

(3.24) (rum) I a~ 1. . .a”r ( \
\

r_ l 
(rum) ! ~~~~~~~~~~~~~~~ 

. ~~~~~1 r — 
~~~flj ) (nq1) I . . . (n q~ ) I  r 1 r

For a fixed r integers q1,...q we can have at most (2~ _ 1) r 
types of r integers

-11-

-- 
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satisf y ing (3.8) . Thus, by using the inequality (3.24) for each sumniand appearing

in (3.21) we establish the lemma.

We are now ready to prove our main result.

Theorem 3.1. Let A be an n x n doubly stochastic matrix. Then

(3.25) lim p(A a J ) 1/m 
e Tt

Proof. Fron the classical Birkhoff theorem (e.g. (4)) it follows that

r r
(3.26) A = a.p • a . > 0, j  = 1,... ,r, a .  = 1

j=l ~ °j ~ j=1 ~

Without loss of generality one may assume that {cu .’}~ is a decreasing sequence, i.e. (3.19)

holds. We claim that

2n a1 • •

(3. 27) p(A ~ .1 ) > 
( m l )  

______________

lit mI
~n k 1+ . . .+ k = rn (k 1l ) ~~. . .(k I)~

Indeed , let Ic1,... ,k be r non—negative integers which sum up to in. Consider

r
( 3 . 2 8 )  8 = Ic p • -

n,rn

From the expansion (2 .4) for the permanent of piA ~ 3 ) it follows that one has a term of

the form

(mI)2~ 
r 8ij

(3.29) TI a /8..mm . ij 13!m i,j—l

Recall that P0 — (6~~( j ) j ) ’~ . So

(3.30) 8~~ = 

~~i 
k~ 6 (~ ) .

(3 .3 1) a
11 — 

s~ l 
5~~~~~( j ) j



~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ‘

I ~~us the iltlnomlal expansion of a
i

Blj contaIns 

:h: 

term

1 01(1)1 r o (1)j

(3.32) (B j~ ) l  (k l~~~~( i )j ) ! :: :(k r~~~~( i ) i ) t

- 

, 

This implies at once that the expansion of (3.29) contains a term of the form

3 ~~ 
(rnI)2n n ai

Il6al ( j ...a

60t Wj  

(m) !
2n 51

l ...a r

mm . .  (k ~~ (k~~ I I  nun nm L , 3 1 1 O~~~( 1) )  r 0 (i)) 15 (Ic
1

!) . . . ( k I )

As the multinoinial expansion of ~~~~~ contains only positive suimitands from (2.4)  and (3.33)

we obtain the inequality (3.27).

Consider the identity

nk uk nk nk
S
i 
‘...a 

r 
(i~~ )! (i~k )I a1 

1...cu r
( 3 . 3 4 )  

(k
1

I ) ~~~~. . . ( k )!  

— 

(k
1!)~~

...(k !) ~~~~~~~~~~~~~~~

According to Lemma 3.1

~~~ nIc nk nk tic1 r 1 r
______________ mm tim ~1 ..

(3.35) 
(k 1!) ”. . .(k l) ~ 

( 1 € )  
i~~~~~~~~~rH

From ( 3 . 2 7 )  and ( 3 . 3 5 )  it follows

nk nk2n rum mm 1 r( m l )  it ( 1— c  ) a ...a
(3. 36) P ( A •J m

) 
m~

1
~ (an) !  

m 

k1+...+k~—m ~~~~~~~~~~~~

r
Applying the inequality (3.20) and noting that 

~ 
a~ — 1 we finally deduce

i_u

(m I ) 2
~ ~ flTh(1_ ~ ) nm (n— i ) r  — ( r — l )  —r(3 .37)  p(A • a 
~

mm (mit)! ~ 5r 

~~ 
(2n-l )

Using Stirling ’s formula and the fact that list — 0 we get

_ _ _  ~~~. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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(3.38) lim inf p (A ~ jm~~
/m 

> e~~

On the other hand the inequality (2.18) implies

( 3 . 3 9 )  lim sup p(AaJ
m
)
]
~
m

< e~~

The above two inequalities establish the theorem.

Combine Theorems 2.2 and 3.1 to deduce

Theorem 3.2. Let A be an n X n doubly stochastic matrix. ~~~~~~~

(3.40) p(A) > e~~ .

We conclude our paper by an application of the inequality (3.40) to the problem of Marshall

Hall (unpublished) . The problem is to estimate from below the permanent of 0 - 1 matrix

having exactly three I in each row and column . In what follows we consider a lar ger class

of matrices.

Corollary 3.1. Let a be an n X n matrix which is a sum of three permutation matrices.

A! a be1ong~ ~~ the !! ~~ n, 3~

( 3.4 1 )  p(a) > 

(

~~

.)

ti

A lower bound known before was n (5) .

— 1 4—
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